c-Fos identification of neuroanatomical sites associated with haloperidol and clozapine disruption of maternal behavior in the rat.

نویسندگان

  • C Zhao
  • M Li
چکیده

Rat maternal behavior is a complex social behavior. Most antipsychotic drugs disrupt active maternal responses (e.g., pup retrieval, pup licking and nest building). Our previous work shows that typical antipsychotic haloperidol disrupts maternal behavior by blocking dopamine D(2) receptors, whereas atypical clozapine works by blocking 5-HT(2A/2C) receptors. The present study used c-Fos immunohistochemistry technique, together with pharmacological tools and behavioral observations, and delineated the neuroanatomical bases of the disruptive effects of haloperidol and clozapine. Postpartum female rats were treated with haloperidol (0.2 mg/kg sc) or clozapine (10.0 mg/kg sc), with or without pretreatment of quinpirole (a selective dopamine D(2)/D(3) agonist, 1.0 mg/kg sc) or 2,5-dimethoxy-4-iodo-amphetamine (DOI, a selective 5-HT(2A/2C) agonist, 2.5 mg/kg sc). They were then sacrificed 2 h later after a maternal behavior test was conducted. Brain regions that have been previously implicated in the regulation of rat maternal behavior and/or in the antipsychotic action were examined. Behaviorally, both haloperidol and clozapine disrupted pup retrieval, pup licking and nest building. Pretreatment of quinpirole, but not DOI, reversed the haloperidol-induced disruptions. In contrast, pretreatment of DOI, but not quinpirole, reversed the clozapine-induced deficits. Neuroanatomically, the nucleus accumbens (both the shell and core), dorsolateral striatum and lateral septum showed increased c-Fos expression to the treatment of haloperidol. In contrast, the nucleus accumbens shell showed increased expression of c-Fos to the treatment of clozapine. More importantly, pretreatment of quinpirole and DOI produced opposite response profiles in the brain regions where haloperidol and clozapine had an effect. Based on these findings, we concluded that haloperidol disrupts active maternal behavior primarily by blocking dopamine D(2) receptors in a neural circuitry involving the nucleus accumbens, dorsolateral striatum and lateral septum. In contrast, clozapine appears to disrupt maternal behavior mainly by blocking serotonin 5-HT(2A/2C) receptors in the nucleus accumbens shell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The receptor mechanisms underlying the disruptive effects of haloperidol and clozapine on rat maternal behavior: a double dissociation between dopamine D(2) and 5-HT(2A/2C) receptors.

Many antipsychotic drugs disrupt active components of maternal behavior such as pup approach, pup retrieval and nest building at clinically relevant doses in postpartum female rats. However, the neurochemical mechanisms underlying such a disruptive effect remain to be determined. This study examined the neurochemical mechanisms that mediate the disruptive effects of haloperidol (a typical antip...

متن کامل

Sedation and disruption of maternal motivation underlie the disruptive effects of antipsychotic treatment on rat maternal behavior.

The behavioral mechanisms underlying antipsychotic-induced maternal behavior deficits were examined in the present study. Different groups of postpartum rats were treated with haloperidol (0.1 mg/kg), clozapine (10.0 mg/kg), chlordiazepoxide (5.0 mg/kg, an anxiolytic) or vehicle (0.9% saline) on Days 4 and 6 postpartum and their maternal behaviors were tested under either pup-separation (e.g. p...

متن کامل

Induction of c-fos mRNA in rat medial prefrontal cortex by antipsychotic drugs: role of dopamine D2 and D3 receptors.

The present studies compared the effects of acute and chronic administration of haloperidol or clozapine on c-fos mRNA expression in the rat medial prefrontal cortex. Acute administration of clozapine, but not haloperidol robustly increased c-fos mRNA expression in the infralimbic and prelimbic cortex of the rat. Even though most c-fos mRNA-expressing neurons in the clozapine- treated animals w...

متن کامل

Unique antipsychotic activities of the selective metabotropic glutamate receptor 1 allosteric antagonist 2-cyclopropyl-5-[1-(2-fluoro-3-pyridinyl)-5-methyl-1H-1,2,3-triazol-4-yl]-2,3-dihydro-1H-isoindol-1-one.

A newly discovered metabotropic glutamate receptor (mGluR) 1 allosteric antagonist, 2-cyclopropyl-5-[1-(2-fluoro-3-pyridinyl)-5-methyl-1H-1,2,3-triazol-4-yl]-2,3-dihydro-1H-isoindol-1-one (CFMTI), was tested both in vitro and in vivo for its pharmacological effects. CFMTI demonstrated potent and selective antagonistic activity on mGluR1 in vitro and in vivo after oral administration. CFMTI inhi...

متن کامل

Intrathecal Amylin and Salmon Calcitonin Affect Formalin Induced c-Fos Expression in the Spinal Cord of Rats

Background: Amylin and Salmon Calcitonin belong to the calcitonin family of peptides and have high affinity binding sites in the rat spinal cord. The aim of this study was to characterize receptors for Amylin and Salmon Calcitonin functionally in the spinal cord of rats. We assessed the expression of c-Fos in response to intraplantar formalin in the lumbar regions of the spinal cord in consciou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 166 4  شماره 

صفحات  -

تاریخ انتشار 2010